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1. abstract functions

Functions are among the most common mathematical objects and appears
in almost every mathematical theory. Intuitively speaking, a function is just
a machine which attaches to every element a (the input) in a give set A
(the domain of the function) a unique element f(a) (the output/ the image
of a) in a set B (the range of the function). To illustrate these ideas, here
are some day-to-day examples:

(1) The function which attaches to every person its height. The domain
of the function is the set of humans and the range of the functions
is the set of real numbers (theoretically, a person can

√
2-foot tall).

(2) If we attaches to every person, its siblings, the result is not a function
and there are two reason for that. The first is that there are people
with no siblings (and therefore the function is not defined for every
person), also there are people with more than one sibling and for
those people, we do not attach a unique person).

To formal way to define a function is as sets of pairs:

Definition 1.1. Let A,B be two sets. A function from A to B is a set of
orderes pairs f ⊆ A×B such that:

(1) f is total Total on A: ∀a ∈ A.∃b ∈ B.〈a, b〉 ∈ f .
(2) f is univalent : ∀a ∈ A.∀b1, b2 ∈ B.〈a, b1〉 ∈ f∧〈a, b2〉 ∈ f ⇒ b1 = b2.

Notation 1.2. If f is a function from A to B we denote it by f : A → B.
Also if f : A→ B is a function, we denote f(a) = b if and only if 〈a, b〉 ∈ f .
So f(a) is the unique object in the set B that the function f attaches to the
element a.

Example 1.3. (1) Let f = {〈1, a〉, 〈3, b〉, 〈2, a〉}. To see that f is a
function from {1, 2, 3} to {a, b, c}, we need to prove that for every
x ∈ {1, 2, 3} the is a unique y ∈ {a, b, c} such that 〈x, y〉 ∈ f (and
then we can denote f(x) = y). Since there are only 3 elements in f
we can go one-by-one over the elements of f and check that this is
indeed the case manually. Now that we are sure that f is a function,
we can write f : {1, 2, 3} → {a, b} and

f(1) = a, f(2) = a, f(3) = b.

Date: November 11, 2022.

1



2 TOM BENHAMOU UNIVERSITY OF ILLINOIS AT CHICAGO

(2) The identity relation on a set A, is a function idA : A→ A satisfying
idA(a) = a for every a ∈ A.

(3) Consider S = {〈X,x〉 ∈ P (N)× N | x ∈ X}. This is not a function
from P (N) to N since it is not total. For example1, ∅ ∈ P (N), and
there is no x such that 〈∅, x〉 ∈ S, otherwise we would have x ∈ ∅.
Let us try and remove ∅ to see if we get a function. Is S a function
from P (N) \ {∅} to N? This is still not a function since it is not
univalent. For example, 〈{1, 2, 3}, 1〉, 〈{1, 2, 3}, 2〉 ∈ S. Also it is not
Total

(4) Let A,B be any sets. For every b ∈ B the constant function with
value b is the the relation fb from A to B

fb = {〈x, b〉 | x ∈ A} = A× {b}.

Claim: fb is a function from A to B.

Proof. We need to prove that fb is total on A and univalent.
Total: We need to prove that for every x ∈ A there is y ∈ B such
that 〈x, y〉 ∈ fb. Let x ∈ A. Define y = b, then by the definition of
fb, 〈x, b〉 ∈ fb.
Univalent: We need to prove that for every a ∈ A and for every
b1, b2 ∈ B, if 〈a, b1〉, 〈a, b2〉 ∈ fb then b1 = b2. Let a ∈ A, b1, b2 ∈ B
and suppose that 〈a, b1〉, 〈a, b2〉 ∈ fb. We want to prove that b1 = b2.
By the definition of fb, since we have that b1 = b = b2. �

Hence fb : A→ B is a function satisfying ∀a ∈ A.fb(a) = b.
(5) π1 : A × B → A π1 = {〈〈a, b〉, c〉 ∈ (A × B) × A | a = c} Is called

the projection to the left coordinate, it satisfies that π(〈a, b〉) = a.
Similarly, the projection to the right coordinate is denoted π2 : (A×
B)→ B and it satisfies π2(〈a, b〉) = b.

(6) To summation operation on the rational number (or on the natural
numbers/integers/reals) is a function + : R × R → R. We are used
to writing 3 + 5 = 8 instead of +(〈3, 5〉) = 8.

(7) Let g : P (A)×P (B)→ P (A) defined by g = {〈〈X,Y 〉, Z〉 ∈ (P (A)×
P (B))× P (A) | Z = X ∩ Y } we have that g(X,Y ) = X ∩ Y

Definition 1.4. A sequence of elements in the set A is a function f : N→ A.
In calculus we sometime denote an = f(n) and (an)∞n=0 = f .

Example 1.5. The sequence 1, 12 ,
1
3 , ... is formally the function f : N→ Q,

f = {〈n, 1
n+1〉 | n ∈ N} satisfying f(n) = 1

n+1 .

Definition 1.6. Let f : A→ B be a function. The domain of f is simply A,
we denote dom(f) = A. The range of f is B and we denote Range(f) = B.
The image of f is the set Im(f) = {f(a) | a ∈ A}.

Note that Im(f) ⊆ Range(f).

1To prove that e function is not total/univalent, we should provide a counter example.
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Example 1.7. For the function f : R → R, defined by f(x) = x2 we have
that dom(f) = Range(f) = R while Im(f) = [0,∞). Since the last equality
if a set equality, we should prove it by a double implication:

(1) ⊆: Let r ∈ Im(f), we need to prove that r ∈ [0,∞). By definition

of Im(f), there is x ∈ R such that f(x) = r. Those r = x2 ≥ 0 and
by definition of [0,∞), r ∈ [0,∞).

(2) ⊇: Let r ∈ [0,∞). we need to prove that r ∈ Im(f). By definition,
r ≥ 0 and therefore we have

√
r defined. Define (This is an existential

proof) x =
√
r, then f(x) = x2 = r.

Definition 1.8. Let A,B be two sets. We denote the set of all functions
from A to B by

AB = {f ∈ P (A×B) | f is a function from A to B}

Example 1.9. Let F2 be the relation from RR to R defined by

F2 = {〈f, r〉 ∈ RR× R | 〈2, r〉 ∈ f}.

Prove that F is a function.

Proof. Total: We nee to probe that for every f ∈ RR (here the domain of
F2 is itself a set of functions!) there is r ∈ R such that 〈f, r〉 ∈ F . Let
f ∈ RR. we need to find r ∈ R such that 〈2, r〉 ∈ f . Since f is a function
from R to R, it is in particular a total relation on R, and since 2 ∈ R, there
exists r ∈ R such that 〈2, r〉 ∈ f , hence 〈f, r〉 ∈ F2.
Univalent: We want to prove that for any f ∈ RR and any r1, r2 ∈ R, if
〈f, r1〉, 〈f, r2〉 ∈ F2 then r1 = r2. Supposet that 〈f, r1〉, 〈f, r2〉 ∈ F2, then
by definition 〈2, r1〉, 〈2, r2〉 ∈ f . Since f is a function, it is in particular
univalent and therefore r1 = r2. �

Note that we have F2(f) = f(2) for every function f ∈ R.

2. How to work with functions

Given a set of pairs R in A × B we can represent R as a collections of
arrows from he set A to the set B. This is very convenient when considering
functions. For example, to verify the R is a function from A to B we should
simply verify(not prove!) that there is exactly one arrow attached to every
element of A. For example, consider

f : {1, 2, 3, 4} → {−1, 0, 1, 2, 3, 4, 5} f = {〈1, 1〉, 〈2, 1〉, 〈3, 3〉〈4, 5〉}
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In order to discard the need to formulate functions as sets of pair we simply
need to understand when two functions are equal2. This is given by the
following theorem which we omit the proof.

Theorem 2.1. Let f, g be two function. Then the following are equivalent:

(1) dom(f) = dom(g) and ∀x ∈ dom(f).f(x) = g(x).
(2) f = g.

The theorem says that two functions are equal if and only if the functions
have the same domain and to every x in this domain, the function attach
then same element in their range. So in order to describe a function, we
simply have to say what is the domain and describe for every element in
the domain where the function maps/sends it. Here are some of the most
common ways to define functions in this way:

(1) Defining a function with a formula: The definition has the form “
Define f : A → B by f(a) =(some formula)”. For example, we can
define f : R → R by f(r) = 2, this is the constant function which
for every real r returns the value 2. Another example, define g :
P (N)→ P (N) by g(X) = X∪{1, 2}. Then for example g({1, 3, 4}) =
{1, 2, 3, 4} and g(N) = N.

Important: If we define f : A → B by a formula f(a) =(some
formula) we must always make sure that the functions we define are
well defined in the sense that:
(a) The function is total. Practically, this means that we should

make sure that the formula for f(a) is defined for every a ∈ A.
(b) The function is univalent. This means that for every a ∈ A, the

formula for f(a) points to a single element. (This is trivial in
most cases)

2As we did with tuples.
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(c) for every a ∈ A the formula for f(a) returns an element in B.
So the ranged we declared when we wrote f : A→ B is indeed
correct.

(2) Definition of a function by cases: Suppose we which to define a
function on a set A, and for some of the elements of A we want one
formula and for the another part of A we want to use a different
formula. We can do that the following way: “Define f : A→ B by

f(a) =


(first formula) (first condition on a)

(second formula) (second condition on a)

...

where the conditions on a describe the element for which you would
like to use the formula. When we check that a function defined by
cases is well defined, we also have to check the the condition on a
covers all possible a and that they are “disjoint” in the sense that
no a satisfy two of the condition. We can also use “otherwise” if we
would like to take care of the remaining cases

Remark 2.2. The function equality theorem indicated that a function is not
the same as a formula defining it.

For example the functions: f1, f2 : {−1, 0, 1} → R defined by f1(x) = |x|
and f2(x) = x2 have different formulas but they define the same function
since f1(−1) = f2(−1), f1(0) = f2(0), f1(1) = f2(1).

Remember! Different formulas can define the same function.

(1) f : N→ N defined by f(x) = x2 satisfies f(4) = 16.
(2) g : N→ P (N) defined by g(x) = {x, x+ 1} satisfies g(5) = {5, 6}.

(3) t : N→ N defined by t(n) =

{
0 n ∈ Neven

1 n ∈ Nodd
.

satisfies that t(1) = 1, t(14) = 0. s(f)(3) = {−2}.

(4) F : P (N)2 → N defined by F (〈A,B〉) =

{
0 A ∩B = ∅
min(A ∩B) else

satisfies that F (〈{1, 2, 3, 4},Neven〉) = 2.
(5) f : N2 → P (N) defined by f(〈x, y〉) = {n ∈ N | x < n < y} satisfies

f(〈1, 4〉) = {2, 3} -f(〈4, 1〉) = ∅.

Definition 2.3. Let f : A → B be a function and X ⊆ A. We define the
restriction of f to X, denote by f �X : X → B, and a function with domain
dom(f �X) = X and for every x ∈ X, (f �X)(x) = f(x).

Intuitively, the restriction of a function acts the same way that the original
function did, the only difference is that the domain restricts to the new set
X.

Definition 2.4. Let A be any set. We define the Identity function on A as
the function IdA : A→ A defined by IdA(a) = a.
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Example 2.5. Let f : Z→ Z be defined as f(z) = |z|. Prove that f � N =
IdN

Proof. We want to prove equality of functions. First we want to prove that
dom(f �N) = dom(IdN). Indeed by definition of restriction and the identity
function, both of the functions have domain N. Next we want to prove that
∀x ∈ N.(f �N)(x) = IdN(x). Let x ∈ N, then by definition of restriction and
since n ≥ 0 we have

(f � N)(x) = f(x) = |x| = x

and by definition of the identity function we have

IdN(x) = x

Hence

(f � N)(x) = x = IdN(x)

as wanted �

Definition 2.6. Let f : A→ B and g : B → C be two functions. We define
the composition of g in f as g ◦ f : A→ C, to be the function with domain
f and range C such that for each a ∈ A, (g ◦ f)(a) = g(f(a)).

Example 2.7.

3. Properties of functions

Definition 3.1. Let f : A→ B be a function we sat that f is:

(1) One to one/ injective: if for every a1, a2 ∈ A, if f(a1) = f(a2) then
a1 = a2.

(2) Onto/ surjective: if for every b ∈ B there is a ∈ A such that f(a) = b.

Example 3.2. (1) f : R → R defined by f(x) = x2 is not injective as
1 6= −1 and f(−1) = (−1)2 = 1 = 12 = f(1).

(2) f : N→ Z defined by f(n) = n− 1 is injective.

Proof. Let n1, n2 ∈ N. Suppose that f(n1) = f(n2), we want to
prove that n1 = n2. By definition of f , n1 − 1 = n2 − 1, adding 1 to
both sides of the equation we conclude that n1 = n2. �

(3) g : N×N→ N×N defined by g(〈n,m〉) = 〈2n+m,n+m is injective.

Proof. Let 〈n1,m1〉, 〈n2,m2〉 ∈ N×N and assume that g(〈n1,m1〉) =
g(〈n2,m2〉) we want to prove that 〈n1,m1〉 = 〈n2,m2〉. By the
assumption we know that 〈2n1 +m1, n1 +m1 = 〈2n2 +m2, n2 +m2

and by equality of pair we get that

2n1 +m1 = 2n2 +m2 and n1 +m1 = n2 +m2

Subtracting the second equation from the first we get:

2n1 +m1 − (n1 +m1) = 2n2 +m2 − (n2 −m2)

n1 = n2
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Hence by the equality n1 + m1 = n2 + m2, we have that n1 =
n2 cancels so m1 = m2. By equality of pairs we conclude that
〈n1,m1〉 = 〈n2,m2〉. �

(4) F : P (N)→ N) defined by F (X) = {x+ 1 | x ∈ X} is injective.

Proof. Let X1, X2 ∈ P (N), suppose that F (X1) = F (X2) we want
to prove that X1 = X2. By definition of F ,

)∗) {x+ 1 | x ∈ X1} = {x+ 1 | x ∈ X2}
Let us prove X1 = X2 by a double inclusion:
(a) X1 ⊆ X2: Let x0 ∈ X1 we want to prove that x0 ∈ X2. By

definition x0 +1 ∈ {x+1 | x ∈ X1} and by (∗), x0 +1 ∈ {x+1 |
x ∈ X2}. By the replacement principle, there exists y ∈ X2

such that x0 +1 = y+1, hence x0 = y ∈ X2, which implies that
x0 ∈ X2 as wanted.

(b) X2 ⊆ X1: Symmetric to the first inclusion.
�

(5) F1 : N× N→ N defined by F (〈n,m〉) = 2n · 3m is injective.

Proof. Let 〈n1,m1, 〈n2,m2〉 ∈ N × N. Suppose that F1(n1,m1) =
F1(n2,m2) we want to prove that 〈n1,m1〉 = 〈n2,m2〉. By definition
of F2 we have that (∗) 2n13m1 = 2n23m2 . By the fundamental
theorem of arithmentics, each positive natural number has a unique
factorization into primes. The equality (∗) provides two factorization
into primes of the same numbers, hence it must be the same, namely
n1 = n2 and m1 = m2. By the basic property of pairs, 〈n1,m1〉 =
〈n2,m2〉. �

Definition 3.3. Let f : A→ B be a function. The image of f , denoted by
Im(f) = {f(x) | x ∈ A}.

Note that f is surjective if and only if Im(f) = Range(f).

Example 3.4. (1) The function f : N→ N defined by f(n) = 2n is not
surjective.

Proof. For example 1 ∈ N and for every n ∈ N, f(n) 6= 1. Otherwise,
there exists n ∈ N such that f(n) = 1 then by definition of f , 2n = 1
which implies that 1 is even, contradiction. �

Note also that Im(f) = Neven and that f is injective.
(2) The function g : P (Z)→ P (N) defined by g(X) = X∩Z is surjective.

Proof. Let Y ∈ P (N) we want to prove that there is X ∈ P (Z) such
that f(X) = Y . Define X = Y , then since Y ∈ P (N), Y ∈ P (Z).
Also, to see that g(Y ) = Y , we need to prove that Y ∩N = Y . This
is equivalent (by a proposition we have seen previously) to the fact
that Y ⊆ N. This follows since Y ⊆ N. �

Also note that Im(g) = P (N), (since we just proved that g is
surjective) and it is not injective since for example g({−1, 1}) =
{1} = g({1}).
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(3) The function h : (0,∞)→ (0,∞) defined by h(x) = 1
x is surjective.

Proof. Let y ∈ (0,∞), we want to prove that there is x ∈ (0,∞) such
that h(x) = y. Namely, we want that 1

x = y. Then define x = 1
y .

Since 0 < y, also 0 < x and therefore x ∈ (0,∞) and we have that
h(x) = 1

1
y

= y as wanted. �

Proposition 3.5. Let f : A→ B and g : B → C be any functions.

(1) If f, g are injective then so is g ◦ f .
(2) If f, g are surjective then so is g ◦ f

Definition 3.6. A function f : A → B is invertible if there is a function
g : B → A such that:

g ◦ f = idA and f ◦ g = idB

Example 3.7.

Theorem 3.8. If g1, g2 are two inverse functions of f then g1 = g2. We
denote the inverse function of f by f−1.

Proof. Suppose the g1, g2 are two inverse function of f , then

g1 ◦ f = idA and f ◦ g1 = idB

g2 ◦ f = idA and f ◦ g2 = idB

It follows that

g1 = g1 ◦ IdB = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = IdA ◦ g2 = g2

�

Theorem 3.9. A function f : A → B is invertible if and only if it is one
to one and onto.

Proof. Suppose that f is invertible and let f−1 : B → A be the inverse
function. Let us prove that f is one to one and onto:

• one to one: Let a1, a2 ∈ A, suppose that f(a1) = f(a2), we want
to prove that a1 = a2. Then f−1(f(a1)) = f−1(f(a2)) and since
f−1 ◦ f = IdA we get that

a1 = f−1(f(a1)) = f−1(f(a2)) = a2

• onto: Let b ∈ B, we want to prove that there is a ∈ A such that
f(a) = b. Let a = f−1(b) ∈ A. Then f(a) = f(f−1(b)) and since
f ◦ f−1 = IdB, we have that f(a) = f(f−1(b)) = b as wanted.

For the other direction, suppose that f is one to one and onto B. We want
to prove that f is invertible, namely that there is a function g : B → A
such that f ◦ g = IdB and g ◦ f = IdA. Here is the definition of g: For any
element of b, there is (since f is onto B) a unique (since f is one to one)
element ab ∈ A such that f(ab) = b. Define g(b) = ab. Let us prove that g
is inverse to f :
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• g ◦ f = IdA: Let a ∈ A, then denote f(a) = b ∈ B. By definition
g(b) = ab is the unique element in A such that f(ab) = b and since
f(a) = b it follows that a = ab. Hence g(f(a)) = g(b) = ab = a. It
follows that g ◦ f = IdA.
• f ◦ g = IdB: Let b ∈ B, by definition, g(b) = ab and ab has the

property that it is (the unique which is) mapped to b, namely f(ab) =
b. Hence f(g(b)) = f(ab) = b. Again it follows that f ◦ g = IdB.

�


